一.剑指 Offer II 013. 二维子矩阵的和

1.题干及思路

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回左上角 (row1, col1) 、右下角 (row2, col2) 的子矩阵的元素总和。

示例 1:

img

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]

解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • -105 <= matrix[i][j] <= 105
  • 0 <= row1 <= row2 < m
  • 0 <= col1 <= col2 < n
  • 最多调用 104sumRegion 方法

注意:本题与主站 304 题相同: https://leetcode-cn.com/problems/range-sum-query-2d-immutable/

要点:前缀和

思路:前缀和,用dp数组记录从[0,0]到[i,j]的范围和,查询时通过面积加减法可以直接算

2.C++实现

class NumMatrix {
public:
    vector<vector<int>> dp;
    NumMatrix(vector<vector<int>>& matrix) {
        dp.resize(matrix.size(),vector<int>(matrix[0].size()));
        int temp = 0;
        for(int j=0;j<matrix[0].size();j++){
            temp += matrix[0][j];
            dp[0][j] = temp;
        }
        temp = dp[0][0];
        for(int i=1;i<matrix.size();i++){
            temp += matrix[i][0];
            dp[i][0] = temp;
        }
        for(int i=1;i<matrix.size();i++){
            for(int j=1;j<matrix[0].size();j++){
                dp[i][j] = dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+matrix[i][j];
            }
        }
    }
    
    int sumRegion(int row1, int col1, int row2, int col2) {
        if(row1==0&&col1==0) return dp[row2][col2];
        else if(row1==0&&col1!=0){
            return dp[row2][col2]-dp[row2][col1-1];
        }
        else if(row1!=0&&col1==0){
            return dp[row2][col2]-dp[row1-1][col2];
        }
        else{
            return dp[row2][col2]+dp[row1-1][col1-1]-dp[row1-1][col2]-dp[row2][col1-1];
        }
    }
};

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix* obj = new NumMatrix(matrix);
 * int param_1 = obj->sumRegion(row1,col1,row2,col2);
 */