一.剑指 Offer II 013. 二维子矩阵的和
1.题干及思路
给定一个二维矩阵 matrix
,以下类型的多个请求:
- 计算其子矩形范围内元素的总和,该子矩阵的左上角为
(row1, col1)
,右下角为(row2, col2)
。
实现 NumMatrix
类:
NumMatrix(int[][] matrix)
给定整数矩阵matrix
进行初始化int sumRegion(int row1, int col1, int row2, int col2)
返回左上角(row1, col1)
、右下角(row2, col2)
的子矩阵的元素总和。
示例 1:
输入:
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
- 最多调用
104
次sumRegion
方法
注意:本题与主站 304 题相同: https://leetcode-cn.com/problems/range-sum-query-2d-immutable/
要点:前缀和
思路:前缀和,用dp数组记录从[0,0]到[i,j]的范围和,查询时通过面积加减法可以直接算
2.C++实现
class NumMatrix {
public:
vector<vector<int>> dp;
NumMatrix(vector<vector<int>>& matrix) {
dp.resize(matrix.size(),vector<int>(matrix[0].size()));
int temp = 0;
for(int j=0;j<matrix[0].size();j++){
temp += matrix[0][j];
dp[0][j] = temp;
}
temp = dp[0][0];
for(int i=1;i<matrix.size();i++){
temp += matrix[i][0];
dp[i][0] = temp;
}
for(int i=1;i<matrix.size();i++){
for(int j=1;j<matrix[0].size();j++){
dp[i][j] = dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+matrix[i][j];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
if(row1==0&&col1==0) return dp[row2][col2];
else if(row1==0&&col1!=0){
return dp[row2][col2]-dp[row2][col1-1];
}
else if(row1!=0&&col1==0){
return dp[row2][col2]-dp[row1-1][col2];
}
else{
return dp[row2][col2]+dp[row1-1][col1-1]-dp[row1-1][col2]-dp[row2][col1-1];
}
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/